Transmembrane Topology of the Mammalian Slc11a2 Iron Transporter†

نویسندگان

  • Maciej Czachorowski
  • Steven Lam-Yuk-Tseung
  • Mathieu Cellier
  • Philippe Gros
چکیده

The mammalian Slc11a1 and Slc11a2 proteins define a large family of secondary metal transporters. Slc11a1 and Slc11a2 function as pH-dependent divalent cation transporters that play a critical role in host defenses against infections and in Fe2+ homeostasis, respectively. The position and polarity of individual transmembrane domains (TMD) of Slc11a2 were studied by an epitope tagging method based on the insertion of small antigenic hemagglutinin A (HA) peptides (YPYDVPDYAS) in predicted intra- or extracellular loops of the protein. The tagged proteins were expressed in transfected LLC-PK1 kidney cells and tested for transport activity, and the polarity of inserted tags with respect to the plasma membrane was determined by immunofluorescence in intact and permeabilized cells. HA epitope tags were inserted at positions 1, 98, 131, 175, 201, 243, 284, 344, 403, 432, 468, 504, and 561. Insertions at positions 98, 131, 175, 403, and 432 abrogated metal transport by Slc11a2, while insertions at positions 1, 201, 243, 284, 344, 468, 504, and 561 resulted in functional proteins. Topology mapping in functional HA-tagged Slc11a2 proteins indicated that the N-terminus (1), as well as loops delineated by TMD4-5 (201), TMD6-7 (284), and TMD10-11 (468), and C-terminus (561) are intracellular, while loops separating TMD5-6 (243), TMD7-8 (344), and TMD11-12 (504) are extracellular. These results are compatible with a topology of 12 transmembrane domains, with intracellular amino and carboxy termini. Structural models constructed by homology threading support this 12TMD topology and show 2-fold structural symmetry in the arrangement of membrane helices for TM1-5 and TM6-10 (conserved Slc11 hydrophobic core).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver.

Solute carrier family 11, member 2 (SLC11A2) is the only transmembrane iron transporter known to be involved in cellular iron uptake. It is widely expressed and has been postulated to play important roles in intestinal iron absorption, erythroid iron utilization, hepatic iron accumulation, placental iron transfer, and other processes. Previous studies have suggested that other transporters migh...

متن کامل

To the editor : Analysis of the E 399 D mutation in SLC 11 A 2

In a recent Blood article, Mims and colleagues1 reported the phenotype of a patient with anemia and iron overload who was homozygous for a novel mutation in the iron transporter SLC11A2 (DMT1). SLC11A2 (solute carrier family 11, member 2) is the only known transporter involved in cellular iron uptake in mammals. We recently showed that Slc11a2 was critical for both intestinal iron absorption an...

متن کامل

Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane.

Mutations in the Nramp1 gene (Slc11a1) cause susceptibility to infection by intracellular pathogens. The Nramp1 protein is expressed at the phagosomal membrane of macrophages and neutrophils and is a paralog of the Nramp2 (Slc11a2) iron transporter. The Nramp1 transport mechanism at the phagosomal membrane has remained controversial. An Nramp1 protein modified by insertion of a hemagglutinin ep...

متن کامل

Dictyostelium Nramp1, which is structurally and functionally similar to mammalian DMT1 transporter, mediates phagosomal iron efflux

The Nramp (Slc11) protein family is widespread in bacteria and eukaryotes, and mediates transport of divalent metals across cellular membranes. The social amoeba Dictyostelium discoideum has two Nramp proteins. Nramp1, like its mammalian ortholog (SLC11A1), is recruited to phagosomal and macropinosomal membranes, and confers resistance to pathogenic bacteria. Nramp2 is located exclusively in th...

متن کامل

Iron is essential for neuron development and memory function in mouse hippocampus.

Iron deficiency (ID) is the most prevalent micronutrient deficiency in the world and it affects neurobehavioral outcome. It is unclear whether the effect of dietary ID on the brain is due to the lack of neuronal iron or from other processes occurring in conjunction with ID (e.g. hypoxia due to anemia). We delineated the role of murine Slc11a2 [divalent metal ion transporter-1 (DMT-1)] in hippoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2009